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RESULTS
Ablation study – Every introduced improvement is key.

Comparison – Similar or significantly better than the state-of-the-art.

We improve normalizing 
flows to tackle the task of 
voice conversion.

End-to-end, using non-parallel
data, many-to-many speakers, 
and raw audio.

BLOW: A SINGLE-SCALE HYPER-
CONDITIONED FLOW FOR NON-PARALLEL 
RAW-AUDIO VOICE CONVERSION
Joan Serrà, Santiago Pascual, & Carlos Segura

INTRODUCTION
• Generating raw audio is hard; it requires of specific treatment.
• Parallel data does not scale; single-task models neither, specially 

for voice conversion. Need to move towards more unsupervised 
approaches, many-to-many and non-parallel.
• Normalizing flows are cool, and we show that they not only can 

handle these challenging situations, but also that they can 
outperform the state-of-the-art.

Audio examples, paper, code, 
slides, this poster, …

METHODS
Inheriting from Glow [1], but introducing crucial improvements:
1. Single-scale structure – Removing multi-scale structure yields 

better likelihoods and improves conversion. Gradient continues to 
flow thanks to factoring out layer-wise log-determinants.

2. Many blocks – We use 8 blocks of 12 flows each. This yields a 
large receptive field, necessary for raw audio.

3. Forward-backward conversion – Forward/backward passes 
remove/imprint the speaker identity. No operation in latent space 
(condition-free).

4. Hyperconditioning – We condition the coupling layers with a 
hypernetwork [2]. Traditional conditioning underperformed.

5. Structure-wise shared embeddings – Identity is expressed as 
a learnable embedding vector, shared across all structure and 
adapted for each hypernetwork.

6. Data augmentation – Performed in time domain: (a) temporal 
jitter, (b) random pre-/de-emphasis, (c) random amplitude scaling, 
and (d) magnitude flip.

FURTHER DETAIL & RESULTS

Loss: likelihood

Blocks

Evaluation
• Approaches: Glow, Glow-WaveNet, StarGAN, and VQ-VAE.
• Data: VCTK (36 hours train, 108 speakers, avg. 20 min/speaker).
• Measures: objective (likelihood + speaker spoofing) and subjective (as 

in the voice conversion challenge [3]).

Further results
• Condition-free latent space. Spoofing results: Audio-based = 99.3% 

(MFCC+Linear) / z-based = 1.8% (RF), 1.4% (MLP) / Chance = 1.1% 
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