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o Parallel data

Non-scal@ble, problematic collection
O Intermiediate representation

Raw audio is a challenge!

Many-to-many + Non-parallel + Raw audio
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INTRODUCTION
GENERATION OF RAW AUDIO

o Autoregressive models: WaveNet, SampleRNN, WaveRNN, ...
o Generative adversarial networks: SEGAN, WaveGAN, ...

o Flow-based models (normalizing flows): WaveGlow
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INTRODUCTION
PROPERTIES OF FLOW-BASED MODELS

Standard training (with validation data)
Exact latent variable inference
"Meaningful” loss (likelihood)

Exact likelihood evaluation

Efficient inference/synthesis

Useful latent space

O O O O O O O



INTRODUCTION
POPULAR FLOW-BASED MODEL: GLOW

?

A step of flow x K

t

squeeze

affine coupling layer M

invertible 1x1 conv @“ split
'_}'_L )
— step of flow x K x (L—1)

3

(a) One step of our flow. (b) Multi-scale architecture (Dinh et al., 2016).




INTRODUCTION
POPULAR FLOW-BASED MODEL: GLOW

Description

Function

Reverse Function

Log-determinant

Actnorm.
See Sectioni3.1.

V’i,j:yi,j =S®X,;,j+b

Vi,j:x;; = (yi,;j —b)/s

h - w - sum(log |s|)

Invertible 1 x 1 convolution.

W :[cXxd.
See Section 3.2.

V’i,j ‘Yi,j = Wx,-,j

V’i,j X4, = W‘lyi,j

h - w -log | det(W)|
or

h - w - sum(log |s|)
(see eq. (10))

Affine coupling layer.
See Section 3.3 and
(Dinh et al., 2014)

Xa,Xp = split(x)
(logs,t) = NN(xp)
s = exp(logs)

Ya =8S0OXxq+t

Yo = Xp

y = concat(ya,¥s)

Ya,¥b = split(y)
(logs,t) = NN(ys)
s = exp(log s)

Xq = (Yo — t)/s
Xp = Yb

x = concat(Xa, Xp)

sum(log(|s|))
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Coupling network




BLOW
CRUCIAL CHANGES

1. Single-scale structure

Many blocks

Forward-backward conversion
Hyperconditioning

Structure-wise shared embeddings

o o B W ™

Data augmentation
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SINGLE-SCALE STRUCTURE

Multi-scale structure: —

o Intermediary levels of representation ==

o Encourage gradient flow; facilitate training S
However:

o Lastlevel had the of identity information

o achieves better likelihoods

o doesn't affect gradient flow



BLOW

SINGLE-SCALE STRUCTURE

(a) One step of our flow.

log (p(x)) = log (p

step of flow
1

squeeze

split
1
iep of flow
1

squeeze

@

(b) Multi-scale architecture (Dinh et al., 2016).
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Images: at most 256x256 pixels 256 samples @ 16 kHz = 16 ms

Phoneme duration: between 50 and 180 ms
+ Phoneme transitions! Need at least 3,500 samples!



BLOW
MANY BLOCKS

Images: at most 256x256 pixels 256 samples @ 16 kHz = 16 ms

Phoneme duration: between 50 and 180 ms
+ Phoneme transitions! Need at least 3,500 samples!

How to adapt the receptive field?
More aggressive squeezing, more layers, ...

with less layers (8x12) and same squeezing
12.5k samples @ 16 kHz = 781 ms



BLOW
FORWARD-BACKWARD CONVERSION

Default strategy: Operate in the latent space (z)

o Progressive changes/interpolations

o Few/zero-shot learning

z=f(x), x=/"(2)
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BLOW
FORWARD-BACKWARD CONVERSION

Affine coupling

Coupling

network
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HYPERCONDITIONING

Straightforward strategy: Conditioning in the coupling network
o No invertibility constrains

o Where most of the transformation takes place
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BLOW
HYPERCONDITIONING

Straightforward strategy: Conditioning in the coupling network

o No invertibility constrains

o Where most of the transformation takes place
However:

o Concatenation was ignored

o Addition not powerful enough

o Let's of the convolutions (hyper nets)



BLOW
HYPERCONDITIONING
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BLOW
STRUCTURE-WISE SHARED EMBEDDINGS

Straightforward strategy:

One independent embedding
per coupling network




BLOW
STRUCTURE-WISE SHARED EMBEDDINGS

Straightforward strategy:

One independent embedding
per coupling network

However:

o Independent conditioning not focusing on the essence (the speaker
identity) ... Too much freedom?

o Inspired by StyleGAN, we employ for all
layers



BLOW
DATA AUGMENTATION

Time domain augmentations:

1. Temporal jitter (max. =1 frame)
2. Random pre-/de-emphasis (max. £0.25)
3. Random amplitude scaling

4. Random flip
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EXPERIMENTAL SETUP
EVALUATION

o Data: VCTK
o Compared approaches:

o Flow-based: Glow + WaveGlow

o State-of-the-art: StarGAN-VC + VQ-VAE
o Scores:

o Objective: Likelihood + Spoofing

o Subjective (VC-Challenge): Naturalness + Similarity
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ABLATION STUDY

Table 1: Objective scores and their relative difference for possible Blow alternatives (5 min per
speaker, 100 epochs).

Configuration L [nat/dim] Spoofing [%]
Blow 4.30 66.2

1: with 3x32 structure 4.01 (— 6.7%) 17.2 (—74.0%)
2: with 3x32 structure (squeeze of 8) 421 (— 2.1%) 65.7 (— 0.8%)
3: with multi-scale structure 3.64 (—15.3%) 3.5(—94.7%)
4: with multi-scale structure (5x 19, squeeze of 4) 3.99 (— 7.2%) 16.6 (—74.9%)
5: with additive conditioning (coupling network) 4.28 (— 0.5%) 39.5 (—40.3%)
6: with additive conditioning (before ActNorm) 4.28 (— 0.5%) 22.5 (—66.0%)
7: without data augmentation 4.15 (— 3.5%) 28.3 (—57.2%)
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Table 2: Objective and subjective voice conversion scores. For all measures, higher is better. The first
two reference rows correspond to using original recordings from source or target speakers as target.

Approach Objective Subjective
L [nat/dim] Spoofing [%] Naturalness [1-5] Similarity [%]

Source as target n/a 1.1 4.33 10.6
Target as target n/a 99.3 4.83 98.5
Glow 4.11 1.2 n/a n/a
Glow-WaveNet 4.18 EN | n/a n/a
StarGAN n/a 44 2.87 61.8
VQ-VAE n/a 65.0 242 69.7

Blow 4.45 R 2.83 77.6
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Figure 2: Objective scores with respect to amount of training (A—-B) and target/source speaker (C-D).
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CONVERSION EXAMPLES
4{») Source 4)) Source

Q) Target ") Target

4{») Conversion 4") Conversion

More examples:

PyTorch code:

Paper:


https://blowconversions.github.io/
http://github.com/joansj/blow
https://arxiv.org/abs/1906.00794
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CONCLUSION
SUMMARY

o Second flow-based generative model for raw audio synthesis

o Contributions beyond standard practice:
1. Single-scale structure
2. Many blocks
3. Forward-backward conversion
4. Hyperconditioning
5. Structure-wise shared embeddings
6. Data augmentation
o Very promising results in non-parallel, raw-audio voice conversion



