BLOW: SINGLE-SCALE HYPERCONDITIONED FLOW FOR NON-PARALLEL RAW-AUDIO VOICE CONVERSION

Joan Serrà¹, Santiago Pascual², & Carlos Segura¹ @serrjoa @santty128 @cseguraperales

¹ Telefónica Research, Barcelona
 ² Universitat Politècnica de Catalunya, Barcelona

Preliminary presentation, September 2019

BLOW OUTLINE

- \circ Introduction
 - Flow-based models
 - \circ Glow
- \circ Blow
- Experimental setup
- Results
- Conclusion

INTRODUCTION

INTRODUCTION VOICE CONVERSION

 $\,\circ\,$ One to one models

○ Parallel data

○ Intermediate representation

INTRODUCTION VOICE CONVERSION

 $\,\circ\,$ One to one models

Not exploiting other identities

○ Parallel data

Non-scalable, problematic collection

○ Intermediate representation

Raw audio is a challenge!

INTRODUCTION VOICE CONVERSION

• One to one models

Not exploiting other identities

Parallel data

Non-scalable, problematic collection

Intermediate representation

Raw audio is a challenge!

Many-to-many + Non-parallel + Raw audio

INTRODUCTION GENERATION OF RAW AUDIO

- Autoregressive models: WaveNet, SampleRNN, WaveRNN, ...
- Generative adversarial networks: SEGAN, WaveGAN, ...

INTRODUCTION GENERATION OF RAW AUDIO

- Autoregressive models: WaveNet, SampleRNN, WaveRNN, ...
- Generative adversarial networks: SEGAN, WaveGAN, ...
- Flow-based models (normalizing flows): WaveGlow

INTRODUCTION PROPERTIES OF FLOW-BASED MODELS

- Standard training (with validation data)
- Exact latent variable inference
- "Meaningful" loss (likelihood)
- Exact likelihood evaluation
- Efficient inference/synthesis
- Useful latent space

INTRODUCTION POPULAR FLOW-BASED MODEL: GLOW

(b) Multi-scale architecture (Dinh et al., 2016).

INTRODUCTION POPULAR FLOW-BASED MODEL: GLOW

Description	Function	Reverse Function	Log-determinant
Actnorm. See Section 3.1.	$orall i,j: \mathbf{y}_{i,j} = \mathbf{s} \odot \mathbf{x}_{i,j} + \mathbf{b}$	$orall i, j: \mathbf{x}_{i,j} = (\mathbf{y}_{i,j} - \mathbf{b})/\mathbf{s}$	$h \cdot w \cdot \mathtt{sum}(\log \mathbf{s})$
Invertible 1×1 convolution. W : $[c \times c]$. See Section 3.2.	$orall i,j: \mathbf{y}_{i,j} = \mathbf{W} \mathbf{x}_{i,j}$	$orall i,j:\mathbf{x}_{i,j}=\mathbf{W}^{-1}\mathbf{y}_{i,j}$	$ \begin{array}{c} h \cdot w \cdot \log \det(\mathbf{W}) \\ \text{or} \\ h \cdot w \cdot \operatorname{sum}(\log \mathbf{s}) \\ (\text{see eq. (10)}) \end{array} $
Affine coupling layer. See Section 3.3 and (Dinh et al., 2014)	$\begin{aligned} \mathbf{x}_a, \mathbf{x}_b &= \texttt{split}(\mathbf{x}) \\ (\log \mathbf{s}, \mathbf{t}) &= \texttt{NN}(\mathbf{x}_b) \\ \mathbf{s} &= \exp(\log \mathbf{s}) \\ \mathbf{y}_a &= \mathbf{s} \odot \mathbf{x}_a + \mathbf{t} \\ \mathbf{y}_b &= \mathbf{x}_b \\ \mathbf{y} &= \texttt{concat}(\mathbf{y}_a, \mathbf{y}_b) \end{aligned}$	$\begin{aligned} \mathbf{y}_a, \mathbf{y}_b &= \texttt{split}(\mathbf{y})\\ (\log \mathbf{s}, \mathbf{t}) &= \texttt{NN}(\mathbf{y}_b)\\ \mathbf{s} &= \exp(\log \mathbf{s})\\ \mathbf{x}_a &= (\mathbf{y}_a - \mathbf{t})/\mathbf{s}\\ \mathbf{x}_b &= \mathbf{y}_b\\ \mathbf{x} &= \texttt{concat}(\mathbf{x}_a, \mathbf{x}_b) \end{aligned}$	sum(log(s))

BLOW FLOW-BASED MODEL

BLOW CRUCIAL CHANGES

- 1. Single-scale structure
- 2. Many blocks
- 3. Forward-backward conversion
- 4. Hyperconditioning
- 5. Structure-wise shared embeddings
- 6. Data augmentation

BLOW SINGLE-SCALE STRUCTURE

Multi-scale structure:

- Intermediary levels of representation
- Encourage gradient flow; facilitate training

(a) One step of our flow.

(b) Multi-scale architecture (Dinh et al., 2016).

BLOW SINGLE-SCALE STRUCTURE

Multi-scale structure:

- **o** Intermediary levels of representation
- Encourage gradient flow; facilitate training

However:

- **o** Last level had the strongest presence of identity information
- Single-scale achieves better likelihoods
- Single-scale doesn't affect gradient flow

BLOW **SINGLE-SCALE STRUCTURE**

$$\log \left(p\left(\mathbf{x} \right) \right) = \log \left(p\left(\mathbf{z} \right) \right) + \sum_{i=1}^{k} \log \left| \det \left(\frac{\partial f_i(\mathbf{h}_{i-1})}{\partial \mathbf{h}_{i-1}} \right) \right|$$

BLOW MANY BLOCKS

Images: at most 256x256 pixels

256 samples @ 16 kHz = 16 ms

Phoneme duration: between 50 and 180 ms

+ Phoneme transitions!

Need at least 3,500 samples!

BLOW MANY BLOCKS

Images: at most 256x256 pixels

256 samples @ 16 kHz = 16 ms

Phoneme duration: between 50 and 180 ms + Phoneme transitions!

Need at least 3,500 samples!

How to adapt the receptive field?

More aggressive squeezing, more layers, ... More blocks with less layers (8x12) and same squeezing

12.5k samples @ 16 kHz = 781 ms

Default strategy: Operate in the latent space (z)

- Progressive changes/interpolations
- Few/zero-shot learning

Default strategy: Operate in the latent space (z)

- Progressive changes/interpolations
- Few/zero-shot learning

However:

- o Noisy
- \circ Not powerful enough

Default strategy: Operate in the latent space (z)

- Progressive changes/interpolations
- Few/zero-shot learning

However:

- o Noisy
- \circ Not powerful enough

Identity-neutral z!

Identity-neutral z!

Straightforward strategy: Conditioning in the coupling network

- No invertibility constrains
- Where most of the transformation takes place

- Straightforward strategy: Conditioning in the coupling network
 - No invertibility constrains
 - \circ $\,$ Where most of the transformation takes place

However:

- Concatenation was ignored
- Addition not powerful enough

- Straightforward strategy: Conditioning in the coupling network
 - No invertibility constrains
 - \circ $\,$ Where most of the transformation takes place

However:

- Concatenation was ignored
- Addition not powerful enough
- Let's condition the weights of the convolutions (hyper nets)

$$\mathbf{h}^{(i)} = \mathbf{W}_y^{(i)} * \mathbf{H} + b_y^{(i)}$$

$$\mathcal{K}_{y} = \left\{ \left(\mathbf{W}_{y}^{(1)}, b_{y}^{(1)} \right) \dots \left(\mathbf{W}_{y}^{(n)}, b_{y}^{(n)} \right) \right\} = g\left(\mathbf{e}_{y} \right)$$

BLOW STRUCTURE-WISE SHARED EMBEDDINGS

Straightforward strategy:

One independent embedding per coupling network

BLOW STRUCTURE-WISE SHARED EMBEDDINGS

Straightforward strategy:

One independent embedding per coupling network

However:

- Independent conditioning not focusing on the essence (the speaker identity) ... Too much freedom?
- Inspired by StyleGAN, we employ a single embedding vector for all layers

BLOW DATA AUGMENTATION

Time domain augmentations:

- 1. Temporal jitter (max. ±1 frame)
- 2. Random pre-/de-emphasis (max. ±0.25)
- 3. Random amplitude scaling
- 4. Random flip

EXPERIMENTAL SETUP

EXPERIMENTAL SETUP EVALUATION

- Data: VCTK
- Compared approaches:
 - Flow-based: Glow + WaveGlow
 - State-of-the-art: StarGAN-VC + VQ-VAE
- Scores:
 - Objective: Likelihood + Spoofing
 - Subjective (VC-Challenge): Naturalness + Similarity

Configuration	L [nat/dim]	Spoofing [%]
Blow	4.30	66.2
1: with 3×32 structure	4.01 (- 6.7%)	17.2 (-74.0%)
2: with 3×32 structure (squeeze of 8)	4.21 (- 2.1%)	65.7 (- 0.8%)
3: with multi-scale structure	3.64 (-15.3%)	3.5 (-94.7%)
4: with multi-scale structure $(5 \times 19, \text{ squeeze of } 4)$	3.99 (- 7.2%)	16.6 (-74.9%)
5: with additive conditioning (coupling network)	4.28 (- 0.5%)	39.5 (-40.3%)
6: with additive conditioning (before ActNorm)	4.28 (- 0.5%)	22.5 (-66.0%)
7: without data augmentation	4.15 (- 3.5%)	28.3 (-57.2%)

Configuration	L [nat/dim]	Spoofing [%]
Blow	4.30	66.2
1: with 3×32 structure	4.01 (- 6.7%)	17.2 (-74.0%)
2: with 3×32 structure (squeeze of 8)	4.21 (- 2.1%)	65.7 (- 0.8%)
3: with multi-scale structure	3.64 (-15.3%)	3.5 (-94.7%)
4: with multi-scale structure $(5 \times 19, \text{ squeeze of } 4)$	3.99 (- 7.2%)	16.6 (-74.9%)
5: with additive conditioning (coupling network)	4.28(-0.5%)	39.5 (-40.3%)
6: with additive conditioning (before ActNorm)	4.28(-0.5%)	22.5 (-66.0%)
7: without data augmentation	4.15 (- 3.5%)	28.3 (-57.2%)

Configuration	L [nat/dim]	Spoofing [%]
Blow	4.30	66.2
1: with 3×32 structure	4.01 (- 6.7%)	17.2 (-74.0%)
2: with 3×32 structure (squeeze of 8)	4.21 (- 2.1%)	65.7 (- 0.8%)
3: with multi-scale structure	3.64 (-15.3%)	3.5 (-94.7%)
4: with multi-scale structure $(5 \times 19, \text{ squeeze of } 4)$	3.99 (- 7.2%)	16.6 (-74.9%)
5: with additive conditioning (coupling network)	4.28(-0.5%)	39.5 (-40.3%)
6: with additive conditioning (before ActNorm)	4.28(-0.5%)	22.5 (-66.0%)
7: without data augmentation	4.15 (- 3.5%)	28.3 (-57.2%)

Configuration	L [nat/dim]	Spoofing [%]
Blow	4.30	66.2
1: with 3×32 structure	4.01 (- 6.7%)	17.2 (-74.0%)
2: with 3×32 structure (squeeze of 8)	4.21 (- 2.1%)	65.7 (- 0.8%)
3: with multi-scale structure	3.64 (-15.3%)	3.5 (-94.7%)
4: with multi-scale structure $(5 \times 19, \text{ squeeze of } 4)$	3.99 (- 7.2%)	16.6 (-74.9%)
5: with additive conditioning (coupling network)	4.28(-0.5%)	39.5 (-40.3%)
6: with additive conditioning (before ActNorm)	4.28(-0.5%)	22.5 (-66.0%)
7: without data augmentation	4.15 (- 3.5%)	28.3 (-57.2%)

Configuration	L [nat/dim]	Spoofing [%]
Blow	4.30	66.2
1: with 3×32 structure	4.01 (- 6.7%)	17.2 (-74.0%)
2: with 3×32 structure (squeeze of 8)	4.21 (- 2.1%)	65.7 (- 0.8%)
3: with multi-scale structure	3.64 (-15.3%)	3.5 (-94.7%)
4: with multi-scale structure (5×19 , squeeze of 4)	3.99 (- 7.2%)	16.6 (-74.9%)
5: with additive conditioning (coupling network)	4.28(-0.5%)	39.5 (-40.3%)
6: with additive conditioning (before ActNorm)	4.28 (- 0.5%)	22.5 (-66.0%)
7: without data augmentation	4.15 (- 3.5%)	28.3 (-57.2%)

Approach	Objective		Subjective	
	L [nat/dim]	Spoofing [%]	Naturalness [1–5]	Similarity [%]
Source as target	n/a	1.1	4.83	10.6
Target as target	n/a	99.3	4.83	98.5
Glow	4.11	1.2	n/a	n/a
Glow-WaveNet	4.18	3.1	n/a	n/a
StarGAN	n/a	44.4	2.87	61.8
VQ-VAE	n/a	65.0	2.42	69.7
Blow	4.45	89.3	2.83	77.6

Approach	Objective		Subjective	
	L [nat/dim]	Spoofing [%]	Naturalness [1–5]	Similarity [%]
Source as target	n/a	1.1	4.83	10.6
Target as target	n/a	99.3	4.83	98.5
Glow	4.11	1.2	n/a	n/a
Glow-WaveNet	4.18	3.1	n/a	n/a
StarGAN	n/a	44.4	2.87	61.8
VQ-VAE	n/a	65.0	2.42	69.7
Blow	4.45	89.3	2.83	77.6

Approach	Objective		Subjective	
	L [nat/dim]	Spoofing [%]	Naturalness [1–5]	Similarity [%]
Source as target	n/a	1.1	4.83	10.6
Target as target	n/a	99.3	4.83	98.5
Glow	4.11	1.2	n/a	n/a
Glow-WaveNet	4.18	3.1	n/a	n/a
StarGAN	n/a	44.4	2.87	61.8
VQ-VAE	n/a	65.0	2.42	69.7
Blow	4.45	89.3	2.83	77.6

Approach	Objective		Subjective	
	L [nat/dim]	Spoofing [%]	Naturalness [1–5]	Similarity [%]
Source as target	n/a	1.1	4.83	10.6
Target as target	n/a	99.3	4.83	98.5
Glow	4.11	1.2	n/a	n/a
Glow-WaveNet	4.18	3.1	n/a	n/a
StarGAN	n/a	44.4	2.87	61.8
VQ-VAE	n/a	65.0	2.42	69.7
Blow	4.45	89.3	2.83	77.6

RESULTS AMOUNT OF DATA + TARGET/SOURCE PREF.

RESULTS AMOUNT OF DATA + TARGET/SOURCE PREF.

Figure 2: Objective scores with respect to amount of training (A–B) and target/source speaker (C–D).

RESULTS CONVERSION EXAMPLES

(i) Source
(i) Target
(i) Conversion

()) Conversion

RESULTS CONVERSION EXAMPLES

More examples: <u>https://blowconversions.github.io</u> PyTorch code: <u>https://github.com/joansj/blow</u> Paper: <u>https://arxiv.org/abs/1906.00794</u> CONCLUSION

CONCLUSION SUMMARY

Second flow-based generative model for raw audio synthesis

CONCLUSION SUMMARY

- Second flow-based generative model for raw audio synthesis
- Contributions beyond standard practice:
 - 1. Single-scale structure
 - 2. Many blocks
 - 3. Forward-backward conversion
 - 4. Hyperconditioning
 - 5. Structure-wise shared embeddings
 - 6. Data augmentation

CONCLUSION SUMMARY

- Second flow-based generative model for raw audio synthesis
- Contributions beyond standard practice:
 - 1. Single-scale structure
 - 2. Many blocks
 - 3. Forward-backward conversion
 - 4. Hyperconditioning
 - 5. Structure-wise shared embeddings
 - 6. Data augmentation
- Very promising results in non-parallel, raw-audio voice conversion