
BLOW: SINGLE-SCALE HYPERCONDITIONED 
FLOW FOR NON-PARALLEL RAW-AUDIO 
VOICE CONVERSION

Joan Serrà1, Santiago Pascual2, & Carlos Segura1
@serrjoa @santty128                                 @cseguraperales

1 Telefónica Research, Barcelona
2 Universitat Politècnica de Catalunya, Barcelona

Preliminary presentation, September 2019



BLOW
OUTLINE

o Introduction

o Flow-based models

o Glow

o Blow

o Experimental setup

o Results

o Conclusion



INTRODUCTION



INTRODUCTION
VOICE CONVERSION
o One to one models

o Parallel data

o Intermediate representation



INTRODUCTION
VOICE CONVERSION
o One to one models

Not exploiting other identities

o Parallel data

Non-scalable, problematic collection

o Intermediate representation

Raw audio is a challenge!



INTRODUCTION
VOICE CONVERSION
o One to one models

Not exploiting other identities

o Parallel data

Non-scalable, problematic collection

o Intermediate representation

Raw audio is a challenge!

Many-to-many + Non-parallel + Raw audio
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INTRODUCTION
GENERATION OF RAW AUDIO

o Autoregressive models: WaveNet, SampleRNN, WaveRNN, …

o Generative adversarial networks: SEGAN, WaveGAN, …

o Flow-based models (normalizing flows): WaveGlow
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INTRODUCTION
PROPERTIES OF FLOW-BASED MODELS

o Standard training (with validation data)

o Exact latent variable inference

o “Meaningful” loss (likelihood)

o Exact likelihood evaluation

o Efficient inference/synthesis

o Useful latent space

o …
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1. Single-scale structure

2. Many blocks

3. Forward-backward conversion

4. Hyperconditioning

5. Structure-wise shared embeddings

6. Data augmentation
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BLOW
SINGLE-SCALE STRUCTURE

Multi-scale structure:

o Intermediary levels of representation

o Encourage gradient flow; facilitate training

However:

o Last level had the strongest presence of identity information

o Single-scale achieves better likelihoods

o Single-scale doesn’t affect gradient flow
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MANY BLOCKS

Images: at most 256x256 pixels                            256 samples @ 16 kHz = 16 ms

Phoneme duration: between 50 and 180 ms
+ Phoneme transitions! Need at least 3,500 samples!

How to adapt the receptive field?
More aggressive squeezing, more layers, …
More blocks with less layers (8x12) and same squeezing   

12.5k samples @ 16 kHz = 781 ms
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Default strategy: Operate in the latent space  (z)

o Progressive changes/interpolations

o Few/zero-shot learning

However:

o Noisy

o Not powerful enough

Identity-neutral z!



BLOW
FORWARD-BACKWARD CONVERSION

Identity-neutral z!
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BLOW
HYPERCONDITIONING

Straightforward strategy: Conditioning in the coupling network

o No invertibility constrains

o Where most of the transformation takes place

However:

o Concatenation was ignored

o Addition not powerful enough

o Let’s condition the weights of the convolutions (hyper nets)
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BLOW
STRUCTURE-WISE SHARED EMBEDDINGS

Straightforward strategy:

One independent embedding
per coupling network

However:

o Independent conditioning not focusing on the essence (the speaker 
identity) … Too much freedom?

o Inspired by StyleGAN, we employ a single embedding vector for all 
layers



BLOW
DATA AUGMENTATION

Time domain augmentations:

1. Temporal jitter (max. ±1 frame)

2. Random pre-/de-emphasis (max. ±0.25)

3. Random amplitude scaling

4. Random flip
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EXPERIMENTAL SETUP
EVALUATION

o Data: VCTK

o Compared approaches: 

o Flow-based: Glow + WaveGlow

o State-of-the-art: StarGAN-VC + VQ-VAE

o Scores:

o Objective: Likelihood + Spoofing

o Subjective (VC-Challenge): Naturalness + Similarity
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CONVERSION EXAMPLES

Source Source
Target Target

Conversion Conversion

More examples: https://blowconversions.github.io

PyTorch code: https://github.com/joansj/blow

Paper: https://arxiv.org/abs/1906.00794

https://blowconversions.github.io/
http://github.com/joansj/blow
https://arxiv.org/abs/1906.00794
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CONCLUSION
SUMMARY
o Second flow-based generative model for raw audio synthesis

o Contributions beyond standard practice:
1. Single-scale structure
2. Many blocks
3. Forward-backward conversion
4. Hyperconditioning
5. Structure-wise shared embeddings
6. Data augmentation

o Very promising results in non-parallel, raw-audio voice conversion


